A New Unconditionally Stable Method for Telegraph Equation Based on Associated Hermite Orthogonal Functions
نویسندگان
چکیده
منابع مشابه
An Unconditionally Stable Parallel Difference Scheme for Telegraph Equation
We use an unconditionally stable parallel difference scheme to solve telegraph equation. This method is based on domain decomposition concept and using asymmetric Saul’yev schemes for internal nodes of each sub-domain and alternating group implicit method for sub-domain’s interfacial nodes. This new method has several advantages such as: good parallelism, unconditional stability and better accu...
متن کاملHermite Orthogonal Rational Functions
We recount previous development of d-fold doubling of orthogonal polynomial sequences and give new results on rational function coefficients, recurrence formulas, continued fractions, Rodrigues’ type formulas, and differential equations, for the general case and, in particular, for the d-fold Hermite orthogonal rational functions.
متن کاملUnconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملAn Unconditionally Stable MacCormack Method
The back and forth error compensation and correction (BFECC) method advects the solution forward and then backward in time. The result is compared to the original data to estimate the error. Although inappropriate for parabolic and other nonreversible partial differential equations, it is useful for often troublesome advection terms. The error estimate is used to correct the data before advecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematical Physics
سال: 2016
ISSN: 1687-9120,1687-9139
DOI: 10.1155/2016/7045657